Value Chain Development of Traditional Crops for Nutrition Sensitive Agriculture
Devendra Gauchan, Saroj Pant, Rita Gurung, Niranjan Pudasaini, Bal Krishna Joshi, Krishna Ghimire & Devra Jarvis

INTRODUCTION

- The mountains of Nepal harbours globally important biodiversity of traditional crops such as barley, buckwheat, finger millet, proso millet, foxtail millet, amaranth, bean and high altitude rice that have unique traits of cold, drought and pest tolerance.
- Most of them are grown under default organic conditions and are gluten free, rich in protein, micronutrients and dietary fibers and hence considered "future smart foods" (FAO, 2018). In Nepal, the GEF UNEP project has named them as Himalayan Superfoods (www.himalayancrops.org).
- Many of these crops provide globally important gene pools for chronic malnutrition in the mountain regions in the Nepal Himalayas (Gauchan 2019).
- However, presently the biodiversity of these traditional mountain crops is not adequately exploited by developing markets and value chains for promoting nutrition sensitive agriculture and improving the health of the population.

OBJECTIVES

- Highlight the role of traditional crops in biodiversity-based value chain development for nutrition sensitive agriculture
- Present value chain mapping and analysis of traditional undervalized crops
- Assess the role of traditional crop diversity in nutrition sensitive agriculture for mountain food and nutrition security

METHODOLOGY

This study applies methods combining value chains of biodiversity and nutrition sensitive agriculture of traditional crops from four representative high-altitude locations of Humla, Jumla, Lamjung and Dolakha districts. The research employs combination of qualitative and quantitative methods using field surveys for mapping the value chains components, key actors, constraints and suggested potential interventions in the chain. The information is supplemented with data generated from baseline survey, participatory rural appraisals, field visits, consultation meetings and monitoring of value chain developments based on experiences of the project.

RESULTS AND DISCUSSION

The value chain of traditional crop is currently undervalued, fragmented and poorly connected, where key value chain drivers identified are production, processing, promotion and policy (Fig 1). Hence, nutrition sensitive interventions for biodiversity based value chains are designed in four sub components viz: production, processing, marketing and consumption systems (Fig 2). In upgrading the value chain a new additional sub-component “Seed system” is also suggested for better linkages and improvement with enabling policy environment and service provisions (Fig 3)

CONCLUSION

Value chains are core elements of the food systems which influence both supply and demand of the foods. Biodiversity-based value chain focuses on the biodiversity of the crop to improve interlinkages and efficiency to promote nutrition value in each of the chain and activities in an interactive way with adequate support from enabling policy environment. The value chain approach is thus, useful for identifying pathways and opportunities to shape food systems to be more nutrition sensitive.